
Cygnus configure

K. Richard Pixley
Cygnus Support

Edited January, 1993, by Jeffrey Osier, Cygnus Support.

Copyright c© 1991, 1992, 1993 Cygnus Support

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by Cygnus Support.

1

1 What configure does

This manual documents Cygnus configure, a program which helps to au-
tomate much of the setup activity associated with building large suites of
programs, such the Cygnus Support Developer’s Kit. This manual is there-
fore geared toward readers who are likely to face the problem of configuring
software in source form before compiling and installing it. We assume you
are an experienced programmer or system administrator. For further back-
ground on this topic, see On Configuring Development Tools by K. Richard
Pixley.

When configure runs, it does the following things:

• creates build directories
When you run configure with the ‘--srcdir’ option, it uses
the current directory as the build directory, creating under it a
directory tree that parallels the directory structure of the source
directory. If you don’t specify a ‘srcdir’, configure first as-
sumes that the source code you wish to configure is in your
current directory; if it finds no configure.in input file there,
it searches in the directory configure itself lies in. (For details,
see Section 3.1.2 [Build directories], page 10.)

• generates Makefile
A Makefile template from the source directory, usually called
Makefile.in, is copied to an output file in the build di-
rectory which is most often named Makefile. configure
places definitions for a number of standard Makefile macros
at the beginning of the output file. If ‘--prefix=dir’ or
‘--exec_prefix=dir’ are specified on the configure command
line, corresponding Makefile variables are set accordingly. If
host, target, or site-specific Makefile fragments exist, these
are inserted into the output file. (For details, see Section 3.1.3
[Makefile generation], page 11.)

• generates .gdbinit
If the source directory contains a .gdbinit file and the build
directory is not the same as the source directory, a .gdbinit
file is created in the build directory. This .gdbinit file contains
commands which allow the source directory to be read when
debugging with the gnu debugger, gdb. (See Section “Command
Files” in Debugging With GDB.)

• makes symbolic links
Most build directories require that some symbolic links with
generic names are built pointing to specific files in the source
directory. If the system where configure runs cannot support
symbolic links, hard links are used instead. (For details, see
Section 3.2 [The configure.in input file], page 12.)

2 Cygnus configure

• generates config.status
configure creates a shell script named config.status in the
build directory. This shell script, when run from the build di-
rectory (usually from within a Makefile), will reconfigure the
build directory (but not its subdirectories). This is most often
used to have a Makefile update itself automatically if a new
source directory is available.

• calls itself recursively
If the source directory has subdirectories that should also be
configured, configure is called for each.

3

2 Invoking configure

Cygnus configure is a shell script which resides in a source tree. The usual
way to invoke configure is from the shell, as follows:

eg$./configure host

This prepares the source in the current directory (.) to be compiled for a
host environment. It assumes that you wish to build programs and files in
the default build directory (also the current directory, .). If you neglect
to specify a value for host, Cygnus configure will attempt to discover this
information by itself (see Section 3.1.4 [Determining system information],
page 12). For information on host environments, See Section 3.4 [Host],
page 20.

All gnu software is packaged with one or more configure script(s) (see
Section “How Configuration Should Work” in GNU Coding Standards). By
using configure you prepare the source for your specific environment by
selecting and using Makefile fragments and fragments of shell scripts, which
are prepared in advance and stored with the source.

configure’s command-line options also allow you to specify other aspects
of the source configuration:

configure host [--target=target] [--srcdir=dir] [--rm]

[--site=site] [--prefix=dir] [--exec_prefix=dir]

[--program_prefix=string] [--tmpdir=dir]

[--with-package[=yes/no]] [--norecursion]

[--nfp] [-s] [-v] [-V | --version] [--help]

--target=target
Requests that the sources be configured to target the target
machine. If no target is specified explicitly, the target is assumed
to be the same as the host (i.e., a native configuration). See
Section 3.4 [Host], page 20, and Section 3.5 [Target], page 21,
for discussions of each.

--srcdir=dir
Direct each generated Makefile to use the sources located in di-
rectory dir. Use this option whenever you wish the object code
to reside in a different place from the source code. The build di-
rectory is always assumed to be the directory you call configure
from. See Section 3.1.2 [Build directories], page 10, for an exam-
ple. If the source directory is not specified, configure assumes
that the source is in your current directory. If configure finds
no configure.in there, it searches in the same directory that
the configure script itself lies in. Pathnames specified (Values
for dir) can be either absolute relative to the build directory.

--rm Remove the configuration specified by host and the other
command-line options, rather than create it.

4 Cygnus configure

--site=site
Generate the Makefile using site-specific Makefile fragments
for site. See Section 3.6 [Adding information about local con-
ventions], page 21.

--prefix=dir
Configure the source to install programs and files under directory
dir.

This option sets the variable ‘prefix’. Each generated Makefile
will have its ‘prefix’ variables set to this value. (See Section 3.1
[What configure really does], page 7.)

--exec_prefix=dir
Configure the source to install host dependent files in dir.

This option sets the variable ‘exec_prefix’. Each generated
Makefile will have its ‘exec_prefix’ variables set to this value.
(See Section 3.1 [What configure really does], page 7.)

--program_prefix=string
Configure the source to install certain programs using string as a
prefix. This applies to programs which might be used for cross-
compilation, such as the compiler and the binary utilities, and
also to programs which have the same names as common Unix
programs, such as make.

This option sets the variable ‘program_prefix’. Each generated
Makefile will have its ‘program_prefix’ variables set to this
value. (See Section 3.1 [What configure really does], page 7.)

--tmpdir=tmpdir
Use the directory tmpdir for configure’s temporary files. The
default is the value of the environment variable TMPDIR, or /tmp
if the environment variable is not set.

--with-package[=yes/no]
Set a flag for the compiler to recognize that package is explic-
itly present, or not present, depending on yes/no. If yes/no is
nonexistent, its value is assumed to be yes.

For example, if you wish to configure the program gcc for a Sun
SPARCstation running SunOS 4.x, and you want to make sure
gcc is built using the gnu linker ld, you can configure using

eg$ configure --with-gnu-ld sun4

See Section 3.1 [What configure really does], page 7, for details.
See the installation or release notes for your particular package
for details on which other package flags are useful.

--norecursion
Configure only this directory; ignore any subdirectories. This
is used by the executable shell script config.status to re-
configure only the current directory; it is most often used

Chapter 2: Invoking configure 5

non-interactively, when make is invoked. (See Section 3.1.5
[config.status], page 12.)

--nfp Explicitly assume that the intended host has no floating point
unit.

-s This option is used internally by configure when calling itself
recursively in subdirectories. Its sole purpose is to suppress sta-
tus output. You can override this effect with the --verbose
option.

-v Print status lines for each directory configured. Normally, only
the status lines for the initial working directory are printed.

--version
-V Print configure version number.

--help Display a quick summary of how to invoke configure.� �
Note: You may introduce options with a single dash, ‘-’, rather than

two dashes, ‘--’. However, you may not be able to truncate long option
names when using a single dash. When using two dashes, options may be
abbreviated as long as each option can be uniquely identified. For example,

eg$ configure --s=/u/me/src myhost

is ambiguous, as ‘--s’ could refer to either ‘--site’ or ‘--srcdir’. However,
eg$ configure --src=/u/me/src myhost

is a perfectly legal abbreviation. (Note that the above will probably not
work unless there exists a valid host called ‘myhost’ and you have source
code in the directory /u/me/src that you wish to configure.)
 	

7

3 Using configure

configure prepares source directories for the process of building working
programs. “Configuring” is the process of preparing software to compile
correctly on a given host, optionally for a given target. A program cannot
be built until its source has been configured.

configure subsequently writes a configured Makefile from a pre-built
template; configure uses variables that have been set in the configuring
process to determine the values of some variables in the Makefile. Because
of this we will refer to both configure variables and Makefile variables.
This convention allows us to determine where the variable should be set
initially, in either configure.in or Makefile.in.

3.1 What configure really does
Cygnus configure is a complex shell script you use to set up a certain envi-
ronment in which your programs will compile correctly for your machine and
operating system, and will install themselves in proper places. configure
accomplishes this task in a variety of ways:

• it generates a Makefile from a custom template called Makefile.in in
each relevant source directory;

• you set certain variables for configure, either on the command line
or in the file configure.in, which subsequently sets variables in each
generated Makefile to be used by make when actually building the
software;

• it establishes and populates build directories, places for your compiled
code to reside before being installed;

• it generates a .gdbinit in the build directory, if needed, to communicate
information to gdb;

• it generates a shell script called config.status which is used most often
by the Makefile to reconfigure itself.

• it recurs in subdirectories, setting up entire trees so that they build
correctly; if configure finds another configure script further down in
a given source tree, it knows to use this script and not recur.

For the sake of safety (i.e., in order to prevent broken installations), the
gnu coding standards call for software to be configured in such a way that
an end user trying to build a given package will be able to do so by affecting
a finite number of variables. All gnu software comes with an executable
configure shell script which sets up an environment within a build directory
which will correctly compile your new package for your host (or, alternatively,
whatever host you specify to configure). For further background on this
topic, see On Configuring Development Tools by K. Richard Pixley.

Use configure to effectively communicate with the build process:

• correct terms for certain variables;

8 Cygnus configure

• what host you wish to configure a given package for (see Section 3.4
[Host], page 20);

• to tell the build tools where you want this package installed (by using
‘prefix’, ‘exec_prefix’ and ‘program_prefix’; see Section 3.3.3 [Full
descriptions of all installation directories], page 19);

• optionally, what machine you wish to target this package’s output to
(see Section 3.5 [Target], page 21);

• what other gnu packages are already installed and available to this
particular build (by using the ‘--with-package’ option; see Chapter 2
[Invoking configure], page 3);

• where to build temporary files (by using the ‘--tmpdir=dir’ option; see
Chapter 2 [Invoking configure], page 3);

• whether to recur in subdirectories (changeable through the
‘--norecursion’ option; see Chapter 2 [Invoking configure], page 3).

configure uses a few other files to complete its tasks. These are discussed
in detail where noted.

configure.in
Input file for configure. Shell script fragments reside here. See
Section 3.2 [The configure.in input file], page 12.

Makefile.in
Template which configure uses to build a file called Makefile
in the build directory. See Section 3.1.3 [Makefile generation],
page 11.

config.sub
Shell script used by configure to expand referents to the host
argument into a single specification of the form cpu-vendor-os.
For instance, on the command line you would specify

eg$./configure sun4

to configure for a Sun SPARCstation running SunOS 4.x.
configure consults config.sub to find that the three-part spec-
ification for this is

sparc-sun-sunos4.1.1

which notes the cpu as ‘sparc’, the manufacturer as ‘sun’ (Sun
Microsystems), and the os (operating system) as ‘sunos4.1.1’,
the SunOS 4.1.1 release. See Section 3.2.1 [Variables available
to configure], page 13.

config.guess
If you neglect to put the host argument on the command line,
configure uses config.guess to make an analysis of your ma-
chine (and, incidentally, assumes that you wish to configure your
software for the machine you happen to be running on). The

Chapter 3: Using configure 9

output of config.guess is the same three-part identifier as de-
scribed above.

config.status
The final step in configuring a directory is to create an exe-
cutable shell script, config.status. The main purpose of this
file is to allow the Makefile for the current directory to rebuild
itself, if necessary. See Section 3.1.5 [config.status], page 12.

config/* configure uses three types of Makefile fragments, which re-
side in the directory srcdir/config/. See Section 3.6 [Adding
information about local conventions], page 21.

3.1.1 Build variables

There are several variables in the build process which you can control through
build programs such as make. These include machine definitions, local con-
ventions, installation locations, locations for temporary files, etc. This data
is accessible through certain variables which are configurable in the build
process; we can refer to them as build variables.

For lists of build variables which you can affect by using configure,
see Section 3.2.1 [Variables available to configure.in], page 13, and
Section 3.3.3 [Full descriptions of all installation directories], page 19.

Generally, build variables, which are used by the Makefile to determine
various aspects of the build and installation processes, are changeable by
command-line options to configure. The sense in this is especially seen
when building large suites of programs, like the Cygnus Support Devel-
oper’s Kit, whose individual programs reside in several subdirectories of a
single source code “tree”. All of these subdirectories need to be configured
with information relative to the build directory, which is not known until
configure is run. Unless specified otherwise, configure recursively con-
figures every subdirectory in the source tree with correct information (i.e.,
supplied information that is correct, as well as correctly supplied informa-
tion).

Build variables are passed from configure directly into the Makefile,
and use the same names. In other words, if you specify

eg$./configure --prefix=/usr/gnu/local ... host

on the command line, configure sets an variable called ‘prefix’ to
‘/usr/gnu/local’, and passes this into the Makefile in the same manner.
After this command, each Makefile generated by configure will contain a
line that reads:

prefix = /usr/gnu/local

For a list of the Makefile variables configure can change, and in-
structions on how to change them, see Section 3.2.1 [Variables available
to configure.in], page 13, and Chapter 2 [Invoking configure], page 3.

10 Cygnus configure

3.1.2 Build directories

By default, configure builds a Makefile and symbolic links in the same
directory as the source files. This default works for many cases, but it has
limitations. For instance, using this approach, you can only build object
code for one host at a time.

We refer to each directory where configure builds a Makefile as a build
directory.

The build directory for any given build is always the directory from which
you call configure, or . relative to your prompt. The default source direc-
tory, the place configure looks to find source code, is also .. For instance,
if we have a directory /gnu-stuff/src/ that is the top branch of a tree
of gnu source code we wish to configure, then the program we will use to
configure this code is /gnu-stuff/src/configure, as follows. (Assume for
the sake of argument that our machine is a sun4.)

eg$ cd /gnu-stuff/src

eg$./configure sun4

Created "Makefile" in /gnu-stuff/src

eg$

We just configured the code in /gnu-stuff/src to run on a Sun SPARC-
station using SunOS 4.x by creating a Makefile in /gnu-stuff/src. By de-
fault, we also specified that when this code is built, the object code should
reside in the same directory, /gnu-stuff/src.

However, if we wanted to build this code for more than one host, we
would be in trouble, because the new configuration would write over the
old one, destroying it in the process. What we can do is to make a new
build directory and configure from there. Running configure from the new
directory will place a correct Makefile and a config.status in this new
file. That is all configure does; we must run make to generate any object
code.

The new Makefile in /gnu-stuff/sun4-obj, created from the template
file /gnu-stuff/src/Makefile.in, contains all the information needed to
build the program.

Chapter 3: Using configure 11

eg$ mkdir /gnu-stuff/sun4-obj

eg$ cd /gnu-stuff/sun4-obj

eg$../src/configure --srcdir=../src sun4

Created "Makefile" in /gnu-stuff/sun4-obj

eg$ ls

Makefile config.status

eg$ make all info install install-info clean

compilation messages...

eg$ mkdir /gnu-stuff/solaris2

eg$ cd /gnu-stuff/solaris2

eg$../src/configure --srcdir=../src sol2

Created "Makefile" in /gnu-stuff/solaris2

eg$ ls

Makefile config.status

eg$ make all info install install-info clean

compilation messages...

We can repeat this for other configurations of the same software simply
by making a new build directory and reconfiguring from inside it. If you
neglect to specify the host argument, configure will attempt to figure out
what kind of machine and operating system you happen to be using. See
Section 3.1.4 [Determining system information], page 12. Of course, this
may not always be the configuration you wish to build.

Caution: If you build more than one configuration for a single program,
remember that you must also specify a different ‘--prefix’ for each config-
uration at configure-time. Otherwise, both configurations will be installed
in the same default location (/usr/local); the configuration to be installed
last would overwrite previously installed configurations.

3.1.3 Makefile generation

Cygnus configure creates a file called Makefile in the build directory which
can be used with make to automatically build a given program or package.
configure also builds a Makefile for each relevant subdirectory for a given
program or package (irrelevant subdirectories would be those which contain
no code which needs configuring, and which therefore have no configure
input file configure.in and no Makefile template Makefile.in). See
Section “How to Run make” in GNU Make, for details on using make to
compile your source code.

Each Makefile contains variables which have been configured for a spe-
cific build. These build variables are determined when configure is run. All
build variables have defaults. By default, configure generates a Makefile
which specifies:

• a native build, which is to occur

• in the current directory, and which will be installed

• in the default installation directory (/usr/local) when the code is com-
piled with make.

12 Cygnus configure

Variables are changeable through command-line options to configure (see
Chapter 2 [Invoking configure], page 3).

If you are porting a new program and intend to use configure, see
Chapter 4 [Porting with configure], page 25, as well as Section “Writ-
ing Makefiles” in GNU Make, and Section “Makefile Conventions” in GNU
Coding Standards.

3.1.4 Determining system information

The shell script config.guess is called when you do not specify a host on
the command line to configure. config.guess acquires available system
information from your local machine through the shell command uname. It
compares this information to a database and attempts to determine a usable
three-part system identifier (known as a triple) to use as your host. See
Section 3.1 [What configure really does], page 7, to see how this information
is used.

Note: If you do not specify a host on the command line, configure will
attempt to configure your software to run on the machine you happen to be
using. This may not be the configuration you desire.

3.1.5 config.status

The final step in configuring a directory is to create an executable shell script,
config.status. The main purpose of this file is to allow the Makefile
for the current directory to rebuild itself, if necessary. It is usually run
from within the Makefile. See Section 3.7 [Extensions to the gnu coding
standards], page 21.

config.status also contains a record of the configure session which
created it.

3.2 The configure.in input file
A configure.in file for Cygnus configure consists of a per-invocation sec-
tion, followed by a per-host section, followed by a per-target section, option-
ally followed by a post-target section. Each section is a shell script fragment,
which is executed by the configure shell script at an appropriate time. Val-
ues are passed among configure and the shell fragments through a set of
shell variables. When each section is being interpreted by the shell, the
shell’s current directory is the build directory, and any files created by the
section (or referred to by the section) will be relative to the build directory.
To reference files in other places (such as the source directory), prepend a
shell variable such as ‘$(srcdir)/’ to the desired file name.

The beginning of the configure.in file begins the per-invocation section.

A line beginning with ‘# per-host:’ begins the per-host section.

A line beginning with ‘# per-target:’ begins the per-target section.

If it exists, the post-target section begins with ‘# post-target:’.

Chapter 3: Using configure 13

3.2.1 Variables available to configure.in

The following variables pass information between the standard parts of
configure and the shell-script fragments in configure.in:

srctrigger
Contains the name of a source file that is expected to live in the
source directory. You must usually set this in the per-invocation
section of configure.in. configure tests to see that this file
exists. If the file does not exist, configure prints an error mes-
sage. This is used as a sanity check that configure.in matches
the source directory.

srcname Contains the name of the source collection contained in the
source directory. You must usually set this in the per-invocation
section of configure.in. If the file named in ‘srctrigger’ does
not exist, configure uses the value of ‘srcname’ when it prints
the error message.

configdirs
Contains the names of any subdirectories in which configure
should recurse. You must usually set this in the per-invocation
section of configure.in. If Makefile.in contains a line start-
ing with ‘SUBDIRS =’, then it will be replaced with an assign-
ment to ‘SUBDIRS’ using the value of ‘configdirs’ (if ‘subdirs’
is empty). This can be used to determine which directories to
configure and build depending on the host and target config-
urations. Use ‘configdirs’ (instead of the ‘subdirs’ variable
described below) if you want to be able to partition the subdi-
rectories, or use independent Makefile fragments. Each subdi-
rectory can be independent, and independently reconfigured.

subdirs Contains the names of any subdirectories where configure
should create a Makefile (in addition to the current directory),
without recursively running configure. Use ‘subdirs’ (instead
of the ‘configdirs’ variable described above) if you want to
configure all of the directories as a unit. Since there is a single
invocation of configure that configures many directories, all
the directories can use the same Makefile fragments, and the
same configure.in.

host Contains the full configuration name for the host (generated by
the script config.sub from the name that you entered). This
is a three-part name (commonly referred to as a triple) of the
form cpu-vendor-os.

There are separate variables ‘host_cpu’, ‘host_vendor’, and
‘host_os’ that you can use to test each of the three parts; this
variable is useful, however, for error messages, and for testing
combinations of the three components.

14 Cygnus configure

host_cpu Contains the first element of the canonical triple representing
the host as returned by config.sub. This is occasionally used
to distinguish between minor variations of a particular vendor’s
operating system and sometimes to determine variations in bi-
nary format between the host and the target.

host_vendor
Contains the second element of the canonical triple representing
the host as returned by config.sub. This is usually used to
distinguish among the numerous variations of common operating
systems.

host_os Contains the the third element of the canonical triple represent-
ing the host as returned by config.sub.

target Contains the full configuration name (generated by the script
config.sub from the name that you entered) for the target.
Like the host, this is a three-part name of the form cpu-vendor-
os.

There are separate variables ‘target_cpu’, ‘target_vendor’,
and ‘target_os’ that you can use to test each of the three parts;
this variable is useful, however, for error messages, and for test-
ing combinations of the three components.

target_cpu
Contains the first element of the canonical triple representing the
target as returned by config.sub. This variable is used heavily
by programs which are involved in building other programs, like
the compiler, assembler, linker, etc. Most programs will not need
the ‘target’ variables at all, but this one could conceivably be
used to build a program, for instance, that operated on binary
data files whose byte order or alignment differ from the system
where the program is running.

target_vendor
Contains the second element of the canonical triple representing
the target as returned by config.sub. This is usually used to
distinguish among the numerous variations of common operating
systems or object file formats. It is sometimes used to switch
between different flavors of user interfaces.

target_os
Contains the the third element of the canonical triple represent-
ing the target as returned by config.sub. This variable is used
by development tools to distinguish between subtle variations in
object file formats that some vendors use across operating sys-
tem releases. It might also be use to decide which libraries to
build or what user interface the tool should provide.

Chapter 3: Using configure 15

floating_point
Set to ‘no’ if you invoked configure with the ‘--nfp’ command-
line option, otherwise it is empty. This is a request to target ma-
chines with no floating point unit, even if the targets ordinarily
have floating point units available.

gas Set to ‘true’ if you invoked configure with the
‘--with-gnu-as’ command line option, otherwise it is
empty. This is a request to assume that the specified host
machine has gnu as available even if it ordinarily does not.

srcdir Set to the name of the directory containing the source for this
program. This will be different from . if you have specified the
‘--srcdir=dir’ option. ‘srcdir’ can indicate either an absolute
path or a path relative to the build directory.

package_makefile_frag
If set in configure.in, this variable should be the name a file
relative to ‘srcdir’ to be included in the resulting Makefile. If
the named file does not exist, configure will print a warning
message. This variable is not set by configure.

host_makefile_frag
If set in configure.in, this variable should be the name a file
relative to ‘srcdir’ to be included in the resulting Makefile. If
the named file does not exist, configure will print a warning
message. This variable is not set by configure.

target_makefile_frag
If set in configure.in, this variable should be the name of a file,
relative to ‘srcdir’, to be included in the resulting Makefile.
If the named file does not exist, configure will print a warning
message. This variable is not set by configure.

site_makefile_frag
Set to a file name representing to the default Makefile fragment
for this host. It may be set in configure.in to override this de-
fault. Normally ‘site_makefile_frag’ is empty, but will have
a value if you specify ‘--site=site’ on the command line.

Makefile Set to the name of the generated Makefile. Normally this value
is precisely Makefile, but some programs may want something
else.

removing Normally empty but will be set to some non-null value if you
specified ‘--rm’ on the command line. That is, if ‘removing’ is
not empty, then configure is removing a configuration rather
than creating one.

files If this variable is not empty following the per-target section,
then each word in its value will be the target of a symbolic link
named in the corresponding word from the ‘links’ variable.

16 Cygnus configure

links If the ‘files’ variable is not empty following the per-target sec-
tion, then configure creates symbolic links with the first word
of ‘links’ pointing to the first word of ‘files’, the second word
of ‘links’ pointing to the second word of ‘files’, and so on.

3.2.2 A minimal configure.in

A minimal configure.in consists of four lines.

srctrigger=foo.c
srcname="source for the foo program"
per-host:
per-target:

The ‘# per-host:’ and ‘# per-target:’ lines divide the file into the three
required sections. The ‘srctrigger’ line names a file. configure checks to
see that this file exists in the source directory before configuring. If the
‘srctrigger’ file does not exist, configure uses the value of ‘srcname’ to
print an error message about not finding the source.

This particular example uses no links, and only the default host, target,
and site-specific Makefile fragments if they exist.

3.2.3 For each invocation

configure invokes the entire shell script fragment from the start of
configure.in up to a line beginning with ‘# per-host:’ immediately
after parsing command line arguments. The variables ‘srctrigger’ and
‘srcname’ must be set here.

You might also want to set the variables ‘configdirs’ and
‘package_makefile_frag’ here.

3.2.4 Host-specific instructions

The per-host section of configure.in starts with the line that begins
with ‘# per-host:’ and ends before a line beginning with ‘# per-target:’.
configure invokes the commands in the per-host section when determining
host-specific information.

This section usually contains a big case statement using the vari-
able ‘host’ to determine appropriate values for ‘host_makefile_frag’ and
‘files’, although ‘files’ is not usually set here. Usually, it is set at the end
of the per-target section after determining the names of the target specific
configuration files.

3.2.5 Target-specific instructions

The per-target section of configure.in starts with the line that begins with
‘# per-target:’ and ends before the line that begins with ‘# post-target:’,
if there is such a line. Otherwise the per-target section extends to the end
of the file. configure invokes the commands in the per-target section when

Chapter 3: Using configure 17

determining target-specific information, and before building any files, direc-
tories, or links.

This section usually contains a big case statement using the variable
‘target’ to determine appropriate values for ‘target_makefile_frag’ and
‘files’. The last lines in the per-target section normally set the variables
‘files’ and ‘links’.

3.2.6 Instructions to be executed after target info

The post-target section is optional. If it exists, the ‘post-target’ section
starts with a line beginning with ‘# Post-target:’ and extends to the end
of the file. If it exists, configure invokes this section once for each target
after building all files, directories, or links.

This section is seldom needed, but you can use it to edit the Makefile
generated by configure.

3.2.7 An example configure.in

Here is a small example of a configure.in file.� �
This file is a collection of shell script fragments
used to tailor a template configure script as
appropriate for this directory. For more information,
see configure.texi.

configdirs=
srctrigger=warshall.c
srcname="bison"

per-host:
case "${host}" in
m88k-motorola-*)

host_makefile_frag=config/mh-delta88
;;

esac

per-target:
files="bison_in.hairy"
links="bison.hairy"

post-target:
 	
3.3 Install locations
Using the default configuration, ‘make install’ creates a single tree of files,
some of which are programs. The location of this tree is determined by the

18 Cygnus configure

value of the variable ‘prefix’. The default value of ‘prefix’ is ‘/usr/local’.
This is often correct for native tools installed on only one host.

3.3.1 Changing the default install directory

In the default configuration, all files are installed in subdirectories of
/usr/local. The location is determined by the value of the configure
variable ‘prefix’; in turn, this determines the value of the Makefile vari-
able of the same name (‘prefix’).

You can also set the value of the Makefile variable ‘prefix’ explicitly
each time you invoke make if you are so inclined. However, because many
programs have this location compiled in, you must specify the ‘prefix’ value
consistently on each invocation of make, or you will end up with a broken
installation.

To make this easier, the value of the configure variable ‘prefix’ can be
set on the command line to configure using the option ‘--prefix=’.

3.3.2 Installing for multiple hosts

By default, host dependent files are installed in subdirectories of $(exec_
prefix). The location is determined by the value of the configure vari-
able ‘exec_prefix’, which determines the value of the Makefile variable
‘exec_prefix’. This makes it easier to install for a single host, and simpli-
fies changing the default location for the install tree. The default doesn’t
allow for multiple hosts to effectively share host independent files, however.

To configure so that multiple hosts can share common files, use something
like:

configure host1 -prefix=/usr/gnu -exec_prefix=/usr/gnu/H-host1

make all info install install-info clean

configure host2 -prefix=/usr/gnu -exec_prefix=/usr/gnu/H-host2

make all info install install-info

The first line configures the source for host1 to place host-specific pro-
grams in subdirectories of /usr/gnu/H-host1.

The second line builds and installs all programs for host1, including both
host-independent and host-specific files, as well as removing the host-specific
object files from of the build directory.

The third line reconfigures the source for host2 to place host specific
programs in subdirectories of /usr/gnu/H-host2.

The fourth line builds and installs all programs for host2. Host specific
files are installed in new directories, but the host independent files are in-
stalled on top of the host independent files installed for host1. This results
in a single copy of the host independent files, suitable for use by both hosts.

See Section 3.7 [Extensions to the gnu coding standards], page 21, for
more information.

Chapter 3: Using configure 19

3.3.3 Full descriptions of all installation subdirectories

During any install, a number of standard directories are created. Their
names are determined by Makefile variables. Some of the defaults for
Makefile variables can be changed at configuration time using command
line options to configure. For more information on the standard directories
or the Makefile variables, please refer to Section “Makefile Conventions” in
GNU Coding Standards. See also Section 3.7 [Extensions to the gnu coding
standards], page 21.

Note that configure does not create the directory indicated by the vari-
able ‘srcdir’ at any time. $(srcdir) is not an installation directory.

You can override all Makefile variables on the command line to make.
(See Section “Overriding Variables” in GNU Make.) If you do so, you will
need to specify the value precisely the same way for each invocation of make,
or you risk ending up with a broken installation. This is because many
programs have the locations of other programs or files compiled into them.
If you find yourself overriding any of the variables frequently, you should
consider site dependent Makefile fragments. See also Section 4.3 [Adding
site info], page 27.

During ‘make install’, a number of standard directories are created and
populated. The following Makefile variables define them. Those whose
defaults are set by corresponding configure variables are marked “Makefile
and configure”.

prefix (Makefile and configure)
The root of the installation tree. You can set its Makefile
default with the ‘--prefix=’ command line option to configure
(see Chapter 2 [Invoking configure], page 3). The default value
for ‘prefix’ is ‘/usr/local’.

bindir A directory for binary programs that users can run. The default
value for ‘bindir’ depends on ‘prefix’; ‘bindir’ is normally
changed only indirectly through ‘prefix’. The default value for
‘bindir’ is ‘$(prefix)/bin’.

exec_prefix (Makefile and configure)
A directory for host dependent files. You can specify the
Makefile default value by using the ‘--exec_prefix=’ option
to configure. (See Chapter 2 [Invoking configure], page 3.)
The default value for ‘exec_prefix’ is ‘$(prefix)’.

libdir A directory for libraries and support programs. The default
value for ‘libdir’ depends on ‘prefix’; ‘libdir’ is normally
changed only indirectly through ‘prefix’. The default value for
‘libdir’ is ‘$(prefix)/lib’.

mandir A directory for man format documentation (“man pages”). The
default value for ‘mandir’ depends on ‘prefix’; ‘mandir’ is nor-

20 Cygnus configure

mally changed only indirectly through ‘prefix’. The default
value for ‘mandir’ is ‘$(prefix)/man’.

manNdir These are eight variables named ‘man1dir’, ‘man2dir’, etc. They
name the specific directories for each man page section. For ex-
ample, ‘man1dir’ by default holds the filename $(mandir)/man1;
this directory contains emacs.1 (the man page for gnu Emacs).
Similarly, ‘man5dir’ contains the value $(mandir)/man5, indi-
cating the directory which holds rcsfile.5 (the man page de-
scribing the rcs data file format). The default value for any of
the ‘manNdir’ variables depends indirectly on ‘prefix’, and is
normally changed only through ‘prefix’. The default value for
‘manNdir’ is ‘$(mandir)/manN’.

manNext Not supported by Cygnus configure. The gnu Coding Stan-
dards do not call for ‘man1ext’, ‘man2ext’, so the intended use
for manext is apparently not parallel to ‘mandir’. Its use is
not clear. (See also Section 3.7 [Extensions to the gnu coding
standards], page 21.)

infodir A directory for info format documentation. The default value
for ‘infodir’ depends indirectly on ‘prefix’; ‘infodir’ is nor-
mally changed only through ‘prefix’. The default value for
‘infodir’ is ‘$(prefix)/info’.

docdir A directory for any documentation that is in a format other
than those used by info or man. The default value for ‘docdir’
depends indirectly on ‘prefix’; ‘docdir’ is normally changed
only through ‘prefix’. The default value for ‘docdir’ is
‘$(datadir)/doc’. This variable is an extension to the gnu
coding standards. (See also Section 3.7 [Extensions to the gnu
coding standards], page 21.)

includedir
A directory for the header files accompanying the libraries in-
stalled in ‘libdir’. The default value for ‘includedir’ de-
pends on ‘prefix’; ‘includedir’ is normally changed only indi-
rectly through ‘prefix’. The default value for ‘includedir’ is
‘$(prefix)/include’.

3.4 Host
The arguments to configure are hosts. By host we mean the environment
in which the source will be compiled. This need not necessarily be the same
as the physical machine involved, although it usually is.

For example, if some obscure machine had the gnu POSIX emulation
libraries available, it would be possible to configure most gnu source for a
POSIX system and build it on the obscure host.

Chapter 3: Using configure 21

For more on this topic, see Section “Host Environments” in On Config-
uring Development Tools.

3.5 Target
For building native development tools, or most of the other gnu tools, you
need not worry about the target. The target of a configuration defaults to
the same as the host.

For building cross development tools, please see Section “Building Devel-
opment Environments” in On Configuring Development Tools.

3.6 Adding information about local conventions
If you find that a tool does not get configured to your liking, or if configure’s
conventions differ from your local conventions, you should probably consider
site-specific Makefile fragments. See also Section 4.3 [Adding site info],
page 27.

These are probably not the right choice for options that can be set from
the configure command line or for differences that are host or target de-
pendent.

Cygnus configure uses three types of Makefile fragments. In a gener-
ated Makefile they appear in the order: target fragment, host fragment,
and site fragment. This allows host fragments to override target fragments,
and site fragments to override both.

Host-specific Makefile fragments conventionally reside in the ./config/
subdirectory with names of the form mh-host. They are used for hosts that
require odd options to the standard compiler and for compile time options
based on the host configuration.

Target-specific Makefile fragments conventionally reside in the
./config/ subdirectory with names of the form mt-target. They are used
for target dependent compile time options.

Site specific Makefile fragments conventionally reside in the ./config/
subdirectory with names of the form ms-site. They are used to override
host- and target-independent compile time options. Note that you can also
override these options on the make invocation line.

3.7 Extensions to the gnu coding standards
The following additions to the gnu coding standards are required for Cygnus
configure to work properly.

• The Makefile must contain exactly one line starting with ‘####’. This
line should follow any default macro definitions but precede any rules.
Host, target, and site-specific Makefile fragments will be inserted im-
mediately after this line. If the line is missing, the fragments will not
be inserted.

22 Cygnus configure

• Cygnus adds the following targets to each Makefile. Their existence is
not required for Cygnus configure, but they are documented here for
completeness.

info Build all info files from texinfo source.

install-info
Install all info files.

clean-info
Remove all info files and any intermediate files that can be
generated from texinfo source.

Makefile Calls ./config.status to rebuild the Makefile in this di-
rectory.

• The following Makefile targets have revised semantics:

install Should not depend on the target ‘all’. If the program is
not already built, ‘make install’ should fail. This allows
you to install programs even when make would otherwise
determine them to be out of date. This can happen, for
example, when the result of a ‘make all’ is transported via
tape to another machine for installation.

clean Should remove any file that can be regenerated by the
Makefile, excepting only the Makefile itself, and any links
created by configure. That is, make all clean should re-
turn all directories to their original condition. If this is not
done, then the command sequence

configure host1 ; make all install clean ;
configure host2 ; make all install

will fail because of intermediate files intended for host1.

• Cygnus adds the following macros to all Makefile.in files, but you are
not required to use them to run Cygnus configure.

docdir The directory in which to install any documentation that
is not either a man page or an info file. For man pages, see
‘mandir’; for info, see ‘infodir’.

includedir
The directory in which to install any header files that should
be made available to users. This is distinct from the gcc
include directory, which is intended for gcc only. Files in
‘includedir’ may be used by cc as well.

• The following macros have revised semantics. Most of them describe
installation directories; see also Section 3.3.3 [Full description of all
installation subdirectories], page 19.

datadir is used for host independent data files.

Chapter 3: Using configure 23

mandir The default path for ‘mandir’ depends on ‘prefix’.

infodir The default path for ‘infodir’ depends on ‘prefix’.

BISON is assumed to have a yacc calling convention. To use gnu
bison, use ‘BISON=bison -y’.

• Each Cygnus Makefile also conforms to one additional restriction:

When libraries are installed, the line containing the call to
‘INSTALL_DATA’ should always be followed by a line containing a call
to ‘RANLIB’ on the installed library. This is to accommodate systems
that use ranlib. Systems that do not use ranlib can set ‘RANLIB’ to
“echo” in a host specific Makefile fragment.

25

4 Porting with configure

This section explains how to add programs, host and target configuration
names, and site-specific information to Cygnus configure.

4.1 Adding configure to new programs
If you are writing a new program, you probably shouldn’t worry about port-
ing or configuration issues until it is running reasonably on some host. Then
refer back to this section.

If your program currently has a configure script that meets the gnu
standards (see Section “How Configuration Should Work” in GNU Coding
Standards, please do not add Cygnus configure. It should be possible to
add this program without change to a Cygnus configure style source tree.

If the program is not target dependent, please consider using autoconf
instead of Cygnus configure. autoconf is available from the Free Software
Foundation; it is a program which generates an executable shell script called
configure by automatically finding information on the system to be con-
figured on and embedding this information in the shell script. configure
scripts generated by autoconf require no arguments, and accept the same
options as Cygnus configure. For detailed instructions on using autoconf,
see Section “How to organize and produce Autoconf scripts” in Autoconf .

To add Cygnus configure to an existing program, do the following:

•Make sure the Makefile conforms to the gnu standard
The coding standard for writing a gnu Makefile is described
in Section “Makefile Conventions” in GNU Coding Standards.
For technical information on writing a Makefile, see Section
“Writing Makefiles” in GNU Make.

•Add Cygnus extensions to the Makefile
These are described in Section 3.7 [Extensions to the gnu coding
standards], page 21.

•Collect package specific definitions in a single file
Many packages are best configured using a common Makefile
fragment which is included by all of the makefiles in the different
directories of the package. In order to accomplish this, set the
variable ‘package_makefile_fragment’ to the name of the file.
It will be inserted into the final Makefile before the target-
specific fragment.

•Move host support from Makefile to fragments
This usually involves finding sections of the Makefile that say
things like “uncomment these lines for host host” and moving
them to a new file called ./config/mh-host. For more infor-
mation, see Section 4.2 [Adding hosts and targets], page 26.

26 Cygnus configure

•Choose defaults
If the program has compile-time options that determine the way
the program should behave, choose reasonable defaults and make
these Makefile variables. Be sure the variables are assigned
their default values before the ‘####’ line so that site-specific
Makefile fragments can override them (see Section 3.7 [Exten-
sions to the gnu coding standards], page 21).

•Locate configuration files
If there is configuration information in header files or source files,
separate it in such a way that the files have generic names. Then
move the specific instances of those files into the ./config/
subdirectory.

•Separate host and target information
Some programs already have this information separated. If yours
does not, you will need to separate these two kinds of configu-
ration information. Host specific information is the information
needed to compile the program. Target specific information is
information on the format of data files that the program will
read or write. This information should live in separate files in
the ./config/ subdirectory with names that reflect the config-
uration for which they are intended.

At this point you might skip this step and simply move on. If
you do, you should end up with a program that can be config-
ured only to build native tools, that is, tools for which the host
system is also the target system. Later, you could attempt to
build a cross tool and separate out the target-specific informa-
tion by figuring out what went wrong. This is often simpler than
combing through all of the source code.

•Write configure.in
Usually this involves writing shell script fragments to map from
canonical configuration names into the names of the configura-
tion files. These files will then be linked at configure time from
the specific instances of those files in ./config to files in the
build directory with more generic names. (See also Section 3.1.2
[Build directories], page 10.) The format of configure.in is
described in Section 3.2 [The configure.in input file], page 12.

•Rename Makefile to Makefile.in

At this point you should have a program that can be configured using
Cygnus configure.

4.2 Adding hosts and targets
To add a host or target to a program that already uses Cygnus configure,
do the following.

Chapter 4: Porting with configure 27

• Make sure the new configuration name is represented in config.sub.
If not, add it. For more details, see the comments in the shell script
config.sub.

• If you are adding a host configuration, look in configure.in, in the per-
host section. Make sure that your configuration name is represented in
the mapping from host configuration names to configuration files. If not,
add it. Also see Section 3.2 [The configure.in input file], page 12.

• If you are adding a target configuration, look in configure.in, in the
per-target section. Make sure that your configuration name is repre-
sented in the mapping from target configuration names to configuration
files. If not, add it. Also see Section 3.2 [The configure.in input file],
page 12.

• Look in configure.in for the variables ‘files’, ‘links’,
‘host_makefile_frag’, and ‘target_makefile_frag’. The values
assigned to these variables are the names of the configuration files,
(relative to ‘srcdir’) that the program uses. Make sure that copies of
the files exist for your host. If not, create them. See also Section 3.2.1
[Variables available to configure.in], page 13.

This should be enough to configure for a new host or target configura-
tion name. Getting the program to compile and run properly represents the
hardest work of any port.

4.3 Adding site info
If some of the Makefile defaults are not right for your site, you can build
site-specific Makefile fragments. To do this, do the following.

• Choose a name for your site. It must currently be less than eleven
characters.

• If the program source does not have a ./config/ subdirectory, create
it.

• Create a file called ./config/ms-site where site is the name of your
site. In it, set whatever Makefile variables you need to override to
match your site’s conventions.

• Configure the program with:

configure ... --site=site

29

Variable Index

B
bindir . 19

C
configdirs . 13

D
docdir . 20

E
exec_prefix . 4, 18, 19

F
files . 15
floating_point . 15

G
gas . 15

H
host . 13
host_cpu . 14
host_makefile_frag 15
host_os . 14
host_vendor . 14

I
includedir . 20
infodir . 20

L
libdir . 19
links . 16

M
Makefile . 15
mandir . 19
manNdir . 20
manNext . 20

N
nfp . 5
norecursion . 4

P
package_makefile_frag 15
prefix . 4, 18, 19
program_prefix . 4

R
removing . 15
rm . 3

S
site . 4
site_makefile_frag 15
srcdir . 1, 3, 15
srcname . 13
srctrigger . 13
subdirs . 13

T
target . 3, 14
target_cpu . 14
target_makefile_frag 15
target_os . 14
target_vendor . 14
tmpdir . 4

V
verbose . 5

W
with-package . 4

31

Concept Index

–
--exec_prefix . 4
--help . 5
--nfp . 5
--norecursion . 4
--prefix . 4
--program_prefix . 4
--rm . 3
--site . 4
--srcdir . 3
--target . 3
--tmpdir . 4
--version . 5
--with-package . 4
-s . 5
-v . 5

.

.gdbinit . 1

A
Abbreviating option names 5
Adding configure to new programs . . . 25
Adding hosts and targets 26
Adding local info . 21
Adding site info . 21, 27
autoconf . 25

B
Behind the scenes . 7
bindir . 19
BISON . 23
Build directories . 1, 10
Build variables . 9
Building for multiple hosts 10
Building for multiple targets 10

C
Canonical “triple” 13, 14
Changing the install directory 18
clean . 22
clean-info . 22
Coding standards extensions 21
config.guess . 12
config.guess definition 8
config.status . 2, 12
config.status definition 9
config.sub definition 8
config/ subdirectory 9
configdirs . 13
configure back end . 7
configure details . 7
configure variables . 13
configure.in . 12
configure.in definition 8
configure.in interface 13
Configuring for multiple hosts 18
copyleft . 2
Cygnus extensions . 21
Cygnus Support Developer’s Kit 1, 9

D
datadir . 22
Declarations section 16
Default configuration 11
Detailed usage . 7
docdir . 20, 22

E
Example configure.in 17
Example session . . 3, 4, 8, 9, 10, 18, 22, 27
exec_prefix . 19
exec_prefix option . 4

F
floating_point . 15
For each invocation . 16

32 Cygnus configure

H
help option . 5
host . 13
Host . 20
host shell-script fragment 16
Host-specific instructions 16
Hosts and targets . 26

I
includedir . 20, 22
info . 22
infodir . 20, 23
install . 22
Install details . 19
Install locations . 17
install-info . 22
Installation subdirectories 19
Installing host-independent files 18
Introduction . 1
Invoking configure . 3

L
libdir . 19
Local conventions . 21

M
Makefile . 22
Makefile extensions 21
Makefile fragments 21
Makefile generation 1, 11
Makefile.in definition 8
mandir . 19, 22
manNdir . 20
manNext . 20
Minimal configure.in example 16

N
nfp option . 5, 15
norecursion option . 4

O
Object directories . 10
Other files . 8
Overview . 1

P
per-host section . 12, 16
per-invocation section 12, 16
per-target section 12, 16
Porting with configure 25
post-target section 12, 17
Post-target shell-script fragment 17
prefix . 19
prefix option . 4, 18
program_prefix option 4

R
Recursion . 2
rm option . 3, 15

S
s option . 5
Sample configure.in 17
Sharing host-independent files 18
site option . 4
Sites . 27
srcdir . 1, 15
srcdir option . 3
srcname . 13
srctrigger . 13
Subdirectories . 19
subdirs . 13
Symbolic links 1, 15, 16

T
target . 14
Target . 21
target option . 3
target shell-script fragment 16
Target-specific instructions 16
The exec_prefix directory 18
tmpdir option . 4
Truncating option names 5

U
Usage . 3, 5
Usage: detailed . 7
Using configure . 7

Concept Index 33

V

v option . 5

Variables . 9

Verbose Output . 5

version . 5

W
What configure does 1
What configure really does 7
Where to install . 17
with-gnu-as option 15
with-package option 4

i

Table of Contents

1 What configure does . 1

2 Invoking configure . 3

3 Using configure . 7
3.1 What configure really does . 7

3.1.1 Build variables . 9
3.1.2 Build directories . 10
3.1.3 Makefile generation . 11
3.1.4 Determining system information . 12
3.1.5 config.status . 12

3.2 The configure.in input file . 12
3.2.1 Variables available to configure.in . 13
3.2.2 A minimal configure.in . 16
3.2.3 For each invocation . 16
3.2.4 Host-specific instructions . 16
3.2.5 Target-specific instructions . 16
3.2.6 Instructions to be executed after target info 17
3.2.7 An example configure.in . 17

3.3 Install locations . 17
3.3.1 Changing the default install directory . 18
3.3.2 Installing for multiple hosts . 18
3.3.3 Full descriptions of all installation subdirectories 19

3.4 Host . 20
3.5 Target . 21
3.6 Adding information about local conventions . 21
3.7 Extensions to the gnu coding standards . 21

4 Porting with configure . 25
4.1 Adding configure to new programs . 25
4.2 Adding hosts and targets . 26
4.3 Adding site info . 27

Variable Index . 29

Concept Index . 31

	1 What configure does
	2 Invoking configure
	3 Using configure
	What configure really does
	Build variables
	Build directories
	Makefile generation
	Determining system information
	config.status

	The configure.in input file
	Variables available to configure.in
	A minimal configure.in
	For each invocation
	Host-specific instructions
	Target-specific instructions
	Instructions to be executed after target info
	An example configure.in

	Install locations
	Changing the default install directory
	Installing for multiple hosts
	Full descriptions of all installation subdirectories

	Host
	Target
	Adding information about local conventions
	Extensions to the gnu coding standards

	4 Porting with configure
	Adding configure to new programs
	Adding hosts and targets
	Adding site info

	Variable Index
	Concept Index

